
Tremor
How Rust killed thousands of cores and TB of memory at Wayfair

Agenda

● A bit about us
● What is tremor
● Tremor Script
● <3 OSS

What is Wayfair?

● Sells rugs (and couches!)
● Large online retailer for furniture
● US, UK, DE
● >1000 Employees in Berlin ~25000 worldwide
● We do have a few computers!

● Small team (2 in Berlin, 0.5 in Boston)
● We do Systems Engineering at Wayfair
● Built Tremor
● Sometimes talk about it!
● Darach (@darachennis)
● Heinz (@heinz_gies)
● Anup (@refusestousetwitter)

Who are we?

What is Tremor

● A event processing engine
● An ETL language
● A query language
● Replaced Logstash
● Replaced Telegraf
● We now integrating with k8s

The Tremor approach - Event processing Cartography Disclaimer

Event processing Cartography
Disclaimer

● This is not going to be a scientific
accurate data

● But it’s fine
● I’ve made up my mind about this,

come near me with your facts about
reality

● It lacks nuance but adds fun

The Tremor approach - You’re-going-to-write-some-f**ing-java-if-you-want-to-or-not Island

You’re-going-to-write-some-f**i
ng-java-if-you-want-to-or-not
Island

This is where platforms like Flink or Spark
live and the inhabitants happily write their
Java code to customise event logic.

Usually experienced developers that are
happy to go into low level code.

The Tremor approach - The Archipelago of lets-cobble-transformations-together

The Archipelago of
lets-cobble-transformations-tog
ether

This is where Logstash for example lives,
the inhabitants of those little islands tend
to like putting together pre configured
blocks together a lot.

Usually ops teams that ‘just need to get
s***t done!’ without experience in writing
software but incredible at configuring it.

The make-your-own-language
Atoll

The atoll hosts a small language that
coexists with the much larger runtime
island next to it. It’s inhabitants know to
wield fire scripting but do not want to go
all in into programming.

Ops teams that need the extra oompf! A
mix of some hard coded operators
(tansforms) for performance and a
scripting language to customize logic
without needing all the complexity of
something like Java.

The Tremor approach - The make-your-own-language Atoll

● An ETL language
● Parse, Transform and filter JSON-esque data structures
● Not the language we want but the language we need
● Influenced by Rust and Erlang along with a good pinch of “what was

needed”

Tremor Script

New in 0.8 (to be pre released tomorrow)

● modules - logically encapsulated code
● use - include and preprocess code from other files.
● (I think you can see the Rust influence here ;)
● Functions - you can write and call
● Intrinsics - a easy way to expose functions written in rust as part of a

library

modules

● Allow encapsulating
○ Constants
○ Functions

● Can be nested (modules in modules)
● Prevent clashes (i.e the len function)

use

● Split modules into files
● No need for mod everywhere
● Allows multiple search paths
● Will nest

functions

● Can abstract logic and algorithms
● Parameters
● Always return a value!

functions - patterns

● Can match on arguments
● Executes part of the function

based on them
● Can use all kinds of patterns down

to extractors

functions - varargs

● Multiple arguments
● Can have a fixed number of named

arguments in the beginning

functions - recursion

● Support for recursive functions
● Enforced tail recursion
● Uses recur keyword to make

recursion obvious
● Limited recursion depth (no

infinite loops!)

Tremor <3 OSS

● We open sourced february this year
● All work is happening in the open now
● Collaboration is important to us
● We try to give back

snmalloc

● An allocator specifically designed for producer/consumer patterns
● Aligns really well with what we’re doing (produce -> modify -> consume)
● Working with Matthew P. @ MSR by sharing benchmarks and tracks

○ Result -> two performance improvement released, two more in progress

● https://github.com/microsoft/snmalloc
● @ParkyMatthew

https://github.com/microsoft/snmalloc/pull/138
https://github.com/microsoft/snmalloc/pull/143
https://github.com/microsoft/snmalloc/pull/158
https://github.com/microsoft/snmalloc/issues/154
https://github.com/microsoft/snmalloc
https://twitter.com/parkymatthew?lang=en

Vector (https://vector.dev)

● Integration (send data between vector and tremor)
○ Example: log scraping (where vector excels) and classification (where tremor excels)

● Sharing of ideas and code
○ protobuf / wasm (thanks Ana!)
○ Generalised sinks / sources
○ simd-json

● Rust port of simdjson (we had to use a - because of crate squatting :/)
● Fastest JSON parser for rust (by far!)
● Contributing back bug fixes and performance tweaks
● https://github.com/simdjson
● @lemire

simd-json (https://simd-json.rs)

https://github.com/simdjson
https://twitter.com/lemire

Thank you!

https://tremor.rs @tremordebs

https://tremor.rs
https://twitter.com/tremordebs

BACKUP

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}] } => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{ present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Structural Pattern Matching

Matching events

Given:

{ "arr": [

 { "rec": true },

 { "not-rec": true }

] }

Returns:

Array of matches

[

 # [index,value]

 [0, { "rec": true }]

]

Filter incoming events for:

* Records

* With an 'arr' array field

* That contains at least one record

* With a 'rec' field

* And return that array

match event of

 case r = %{ arr ~= %[%{present rec}]} => r.arr

 default => drop # Drop non-matching events

end

Tremor Query

● Original a YAML configuration file to describe processing graphs
● We hate YAML (sorry, not sorry)
● SQL is well known so we borrow the familiarity
● Does filtering, aggregation and graph building
● Structured not tabular

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Merge-capable aggregate functions
select {

 "measurement": event.measurement,

 "tags": patch event.tags of insert "window" => window end,

 "stats": stats::hdr(event.fields[group[2]], ["0.5", "0.9", "0.99", "0.999"]),

 "class": group[2],

 "timestamp": win::first(event.timestamp), # aggregate functions

}

from in[`10sec`, `1min`, `10min`, `1h`] # tilt frames

group by set(event.measurement, event.tags, each(record::keys(event.fields)))

into normalize;

Micro-Format Extraction

Matching events

Given:

{ "ip": "10.22.0.24" }

Returns:

Array of matches

{

 "prefix": [10, 22, 0, 24],

 "mask": [255, 255, 255, 255],

}

match any valid CIDR

match event of

 case r = %{ ip ~= cidr|10.22.0.0/24| } => r.ip

 case r = %{ ip ~= cidr|| } => r.ip

 default => { "error": "bad IPv[46] addr" }

end;

Convenient nested data structure templating
select {

 "measurement": event.measurement,

 "fields": {

 "min_{event.class}": event.stats.min,

 "max_{event.class}": event.stats.max,

 "mean_{event.class}": event.stats.mean,

 "p99_{event.class}": event.stats.percentiles["0.99"],

 # ...

 }

}

from normalize

into batch;

